\mathbf{x}			
			SET-2
Series HFG1E/1		प्रश्न-पत्र कोड Q.P. Code	56/1/2
रोल नं. Roll No.		परीक्षार्थी प्रश्न-पत्र कोड को मुख-पृष्ठ पर अवश्य लिखें । Candidates must write th on the title page of the an	उत्तर-पुस्तिका के he Q.P. Code swer-book.
्रें रसा	यन विज्ञान	(सैद्धान्तिक)	
	HEMISTRY	(Theory)	() () ()
कः निर्धारित समय : 3 घण्टे		अधिव	कतम अंक : 70 🔅
Time allowed : 3 hours		Maximum	ı Marks : 70 🔅
 कृपया जाँच कर ले कि इस प्र कृपया प्रश्न का उत्तर लिख अवश्य लिखें । इस प्रश्न-पत्र को पढ़ने के पूर्वाह्न में 10.15 बजे किया पढ़ेंगे और इस अवधि के दौर पढ़ेंगे और इस अवधि के दौर • Please check that this Q.P. Code given on th written on the title par • Please check that this Please check that this Please write down answer-book before 15 minute time has be paper will be distrik the students will rea 	प्रश्न-पत्र मे 35 प्रश्न के खना शुरू करने से लिए 15 मिनट का जाएगा । 10.15 बज तन वे उत्तर-पुस्तिका प question paper c ne right hand sid ge of the answer- question paper c the serial n attempting it. en allotted to real outed at 10.15 a d the question j	है। पहले, उत्तर-पुस्तिका में प्रश्न समय दिया गया है। प्रश्न ते से 10.30 बजे तक छात्र केव त कोई उत्तर नहीं लिखेंगे। ontains 19 printed page de of the question pape book by the candidate. ontains 35 questions. umber of the quest ad this question paper. 7 From 10.15 a.m. to paper only and will no	श्न का क्रमांक -पत्र का वितरण त्रल प्रश्न-पत्र को s. er should be ion in the The question of 10.30 a.m., ot write any
			6) * 60666666
56/1/2	< 1		P.T.O

Get More Learning Materials Here :

r www.studentbro.in

सामान्य निर्देशः

निम्नलिखित निर्देशों को बहुत सावधानी से पढ़िए और उनका सख़्ती से पालन कीजिए :

(i) इस प्रश्न-पत्र में 35 प्रश्न हैं । सभी प्रश्न अनिवार्य हैं ।

- (ii) यह प्रश्न-पत्र पाँच खण्डों में विभाजित है क, ख, ग, घ एवं ङ ।
- (iii) खण्ड क में प्रश्न संख्या 1 से 18 तक बहुविकल्पीय प्रकार के एक-एक अंक के प्रश्न हैं।
- (iv) खण्ड ख में प्रश्न संख्या 19 से 25 तक अति लघु-उत्तरीय प्रकार के दो-दो अंकों के प्रश्न हैं ।
- (v) खण्ड ग में प्रश्न संख्या 26 से 30 तक लघु-उत्तरीय प्रकार के तीन-तीन अंकों के प्रश्न हैं।
- (vi) खण्ड घ में प्रश्न संख्या 31 तथा 32 केस-आधारित चार-चार अंकों के प्रश्न हैं।
- (vii) खण्ड ङ में प्रश्न संख्या 33 से 35 दीर्घ-उत्तरीय प्रकार के पाँच-पाँच अंकों के प्रश्न हैं ।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड ख के 2 प्रश्नों में, खण्ड ग के 2 प्रश्नों में, खण्ड घ के 2 प्रश्नों में तथा खण्ड ङ के 2 प्रश्नों में आंतरिक विकल्प का प्रावधान दिया गया है।
- (ix) कैल्कुलेटर का उपयोग वर्जित है ।

खण्ड क

प्रश्न संख्या 1 से 18 तक बहुविकल्पीय प्रकार के एक-एक अंक के प्रश्न हैं । 18×1=18

- α-हेलिक्स संरचनात्मक लक्षण है :

 (a) सुक्रोस का
 (b) स्टार्च का
 - (c) पॉलिपेप्टाइडों का (d) न्यूक्लिओटाइडों का
- स्टार्च के ऐमिलेस घटक में ग्लूकोस इकाइयों को जोड़ने के लिए सम्मिलित ग्लाइकोसाइडी बंध है :
 - (a)
 $C_1 C_6 \alpha \, \bar{a} \, \bar{a} \, \bar{a}$ (b)
 $C_1 C_6 \beta \, \bar{a} \, \bar{a} \, \bar{a}$

 (c)
 $C_1 C_4 \alpha \, \bar{a} \, \bar{a} \, \bar{a}$ (d)
 $C_1 C_4 \beta \, \bar{a} \, \bar{a} \, \bar{a}$

56/1/2

(c)

Get More Learning Materials Here : 🗾

2.04 V

CLICK HERE

1.24 V

(d)

2

General Instructions :

Read the following instructions carefully and strictly follow them :

- (i) This question paper contains **35** questions. All questions are compulsory.
- (ii) This question paper is divided into five Sections A, B, C, D and E.
- (iii) In **Section A** Questions no. **1** to **18** are multiple choice (MCQ) type questions, carrying **1** mark each.
- (iv) In **Section B** Questions no. **19** to **25** very short answer (VSA) type questions, carrying **2** marks each.
- (v) In Section C Questions no. 26 to 30 are short answer (SA) type questions, carrying 3 marks each.
- (vi) In Section D Questions no. 31 and 32 are case-based questions carrying 4 marks each.
- (vii) In Section E Questions no. 33 to 35 are long answer (LA) type questions carrying 5 marks each.
- (viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section B, 2 questions in Section C, 2 questions in Section D and 2 questions in Section E.
- *(ix)* Use of calculators is **not** allowed.

SECTION A

Questions no. 1 to 18 are Multiple Choice (MCQ) type Questions, carrying 1 mark each. 18×1=18

- **1.** An α -helix is a structural feature of :
 - (a) Sucrose (b) Starch
 - (c) Polypeptides (d) Nucleotides
- **2.** The glycosidic linkage involved in linking the glucose units in amylase part of starch is :
 - (a) $C_1 C_6 \alpha$ linkage (b) $C_1 C_6 \beta$ linkage
 - (c) $C_1 C_4 \alpha$ linkage (d) $C_1 C_4 \beta$ linkage

3. Ag⁺ (aq) + e⁻ \longrightarrow Ag (s) E° = + 0.80 V

 $Fe^{2+}(aq) + 2e^{-} \longrightarrow Fe(s)$ $E^{\circ} = -0.44 V$

Find the $\mathbf{E}_{cell}^{\circ}$ for :

Fe (s) + 2Ag⁺ (aq) \longrightarrow Fe²⁺ (aq) + 2Ag (s) (a) 1.6 V (b) -1.16 V

 $(c) \qquad 2.04 \text{ V} \qquad (d)$

56/1/2

Get More Learning Materials Here : 📕

CLICK HERE

3

1.24 V

P.T.O.

4.	एक प्र मान हे	थम कोटि की अभिक्रिया को 50% पूर्ण ोगा :	होने में	30 मिनट लगते हैं । वेग स्थिरांक k का
	(a)	$2.5 imes 10^{-3} ext{ min}^{-1}$	(b)	$2.75 imes 10^{-4} ext{ min}^{-1}$
	(c)	$1{\cdot}25 imes10^{-3}~\mathrm{min}^{-1}$	(d)	$2{\cdot}31 imes10^{-3}~\mathrm{min}^{-1}$
5.	निम्नलि	नखित में से कौन-सा सबसे कम क्षारकी	य है ?	
	(a)	$(CH_3)_2NH$	(b)	NH_3
	(c)	\sim NH ₂	(d)	$(CH_3)_3N$
6.	ऐल्कोह	हॉली माध्यम में NaOH और ${ m Br}_2$ के स	ताथ CE	$ m H_3CONH_2$ अभिक्रिया करके देता है :
	(a)	CH ₃ COONa	(b)	CH_3NH_2
	(c)	$\rm CH_3 CH_2 Br$	(d)	$CH_3CH_2NH_2$
7.	अभिब्रि	कया $R - OH + HCl \xrightarrow{ZnCl_2}$:	RCl +	H ₂ O में ऐल्कोहॉल की अभिक्रियाशीलता
	का सह	ही क्रम क्या है ?		
	(a)	$1^{\circ} < 2^{\circ} < 3^{\circ}$	(b)	$1^{\circ} > 3^{\circ} > 2^{\circ}$
	(c)	$1^{\circ} > 2^{\circ} > 3^{\circ}$	(d)	$3^{\circ} > 1^{\circ} > 2^{\circ}$
8.	बहुलक अणुसंर	नें और प्रोटीनों के मोलर द्रव्यमान f ख्य गुणधर्म प्रयुक्त होता है ?	नेर्धारण	के लिए निम्नलिखित में से कौन-सा
	(a)	परासरण दाब		
	(b)	हिमांक में अवनमन		
	(c)	वाष्प दाब का आपेक्षिक अवनमन		
	(d)	क्वथनांक का उन्नयन		
9.	अधिक	5 ऊँचाई वाली जगहों पर रहने वाले ले	गों के र	रुधिर और ऊतकों में ऑक्सीजन सांद्रता
	निम्न ह	होने का कारण है :		
	(a)	उच्च वायुमंडलीय दाब		
	(b)	निम्न ताप		
	(c)	निम्न वायुमंडलीय दाब		
	(d)	निम्न ताप और उच्च वायुमंडलीय दाब	दोनों	

56/1/2

Get More Learning Materials Here : 💻

CLICK HERE

4

- 4. A first order reaction takes 30 minutes for 50% completion. The value of rate constant k would be :
 - (a) $2.5 \times 10^{-3} \text{ min}^{-1}$ (b) $2.75 \times 10^{-4} \text{ min}^{-1}$ (c) $1.25 \times 10^{-3} \text{ min}^{-1}$ (d) $2.31 \times 10^{-3} \text{ min}^{-1}$
- 5. Which of the following is least basic ?
 - (a) $(CH_3)_2NH$ (b) NH_3
 - (c) $\langle NH_2 \rangle$ (d) $(CH_3)_3N$
- **6.** CH_3CONH_2 on reaction with NaOH and Br_2 in alcoholic medium gives :
 - (a) CH_3COONa (b) CH_3NH_2
 - (c) CH_3CH_2Br (d) $CH_3CH_2NH_2$
- 7. In the reaction $R OH + HCl \xrightarrow{ZnCl_2} RCl + H_2O$, what is the correct order of reactivity of alcohol ?
 - (a) $1^{\circ} < 2^{\circ} < 3^{\circ}$ (b) $1^{\circ} > 3^{\circ} > 2^{\circ}$
 - (c) $1^{\circ} > 2^{\circ} > 3^{\circ}$ (d) $3^{\circ} > 1^{\circ} > 2^{\circ}$
- 8. The colligative property used for the determination of molar mass of polymers and proteins is :
 - (a) Osmotic pressure
 - (b) Depression in freezing point
 - (c) Relative lowering in vapour pressure
 - (d) Elevation is boiling point
- **9.** Low concentration of oxygen in the blood and tissues of people living at high altitude is due to :
 - (a) high atmospheric pressure
 - (b) low temperature
 - (c) low atmospheric pressure
 - (d) both low temperature and high atmospheric pressure

56/1/2

5

CLICK HERE

P.T.O.

Get More Learning Materials Here : 📕

10.	निम्नलि	ाखित में से कौन-सा उत्प्रेरक से प्रभा	वित होता है	t?
	(a)	ΔH	(b)	ΔG
	(c)	E _a	(d)	$\Delta \mathbf{S}$
11.	यौगिक	[Co(SO ₄) (NH ₃) ₅] Br और [(Co(Br) (N	$\mathrm{[H_3)}_5]~\mathrm{SO}_4$ निरूपित करते हैं :
	(a)	ध्रुवण समावयवता	(b)	बंधनी समावयवता
	(c)	आयनन समावयवता	(d)	उपसहसंयोजन समावयवता
12.	ऐल्किल	त फ्लुओराइड का संश्लेषण सबसे अ	च्छी तरह र	से प्राप्त किया जाता है :
	(a)	मुक्त मूलकों से	(b)	स्वार्ट्ज़ अभिक्रिया से
	(c)	सैंडमायर अभिक्रिया से	(d)	फिंकेलस्टीन अभिक्रिया से
13.	लैंथेनॉइ	इड की सर्वाधिक सामान्य और स्थार्य	ो ऑक्सीक	रण अवस्था है :
	(a)	+ 2	(b)	+ 3
	(c)	+ 4	(d)	+ 6
14.	$H_2(g)$	$+ \operatorname{Cl}_{2}(g) \xrightarrow{h\nu} 2\operatorname{HCl}(g) \xrightarrow{d}$	के लिए आ	भेक्रिया कोटि है :
	(a)	2	(b)	1
	(c)	0	(d)	3

प्रश्न संख्या 15 से 18 के लिए, दो कथन दिए गए हैं — जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है । इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों (a), (b), (c) और (d) में से चुनकर दीजिए ।

- (a) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
- (b) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या *नहीं* करता है।
- (c) अभिकथन (A) सही है, परन्तु कारण (R) ग़लत है।

(d) अभिकथन (A) ग़लत है, परन्तु कारण (R) सही है।

15. अभिकथन (A) : जलीय विलयन में $(C_2H_5)_3N$ की अपेक्षा $(C_2H_5)_2NH$ अधिक क्षारकीय है ।

कारण (R) : $(C_2H_5)_3N$ की अपेक्षा $(C_2H_5)_2NH$ में अधिक त्रिविम बाधा एवं +I प्रभाव है ।

6

56/1/2

Get More Learning Materials Here : 📕

10.	Which of the following is affected by catalyst ?			
	(a)	ΔH	(b)	ΔG
	(c)	E _a	(d)	ΔS
11.	The c	ompounds $[Co(SO_4) (NH_3)_5]$ Br	and	$[Co(Br) (NH_3)_5] SO_4 represent :$
	(a)	optical isomerism	(b)	linkage isomerism
	(c)	ionisation isomerism	(d)	coordination isomerism
12.	The s	ynthesis of alkyl fluoride is bes	t obtai	ned from :
	(a)	Free radicals	(b)	Swartz reaction
	(c)	Sandmeyer reaction	(d)	Finkelstein reaction
13.	The n	nost common and stable oxidati	on stat	te of a Lanthanoid is :
	(a)	+ 2	(b)	+ 3
	(c)	+ 4	(d)	+ 6
14.	The o	rder of the reaction		
		$H_{2}(g) + Cl_{2}(g) \xrightarrow{h\nu} 2HCl(g)$	g) is:	
	(a)	2	(b)	1

(c) 0 (d) 3

For Questions number 15 to 18, two statements are given — one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below.

- (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (b) Both Assertion (A) and Reason (R) are true, but Reason (R) is *not* the correct explanation of the Assertion (A).
- (c) Assertion (A) is true, but Reason (R) is false.
- $(d) \qquad Assertion (A) \ is \ false, \ but \ Reason (R) \ is \ true.$
- **15.** Assertion (A) : $(C_2H_5)_2NH$ is more basic than $(C_2H_5)_3N$ in aqueous solution.

CLICK HERE

P.T.O.

🕀 www.studentbro.in

56/1/2

- 16. अभिकथन (A): अभिक्रिया H₂ + Br₂ → 2HBr में आण्विकता 2 प्रतीत होती है ।
 कारण (R): दी हुई प्राथमिक अभिक्रिया में अभिकारकों के दो अणु भाग लेते हैं ।
- 17. अभिकथन (A): ऐनिलीन के ऐसीटिलन से एकल प्रतिस्थापित उत्पाद बनता है।
 कारण (R): NHCOCH₃ समूह का सक्रियण प्रभाव ऐमीनो समूह से अधिक होता है।
- 18. अभिकथन (A): EDTA जल की कठोरता निर्धारण के लिए प्रयुक्त होता है ।
 कारण (R): EDTA द्विदंतुर लिगन्ड है ।

खण्ड ख

- 19. 200 g जल में 10 g अवाष्पशील विलेय घोलकर एक विलयन बनाया गया | 308 K पर इसका वाष्प दाब 31.84 mm Hg है | विलेय का मोलर द्रव्यमान परिकलित कीजिए | 2 (308 K पर शुद्ध जल का वाष्प दाब = 32 mm Hg)
- 20. संक्षेप में व्याख्या कीजिए :
 - (क) कार्बिलऐमीन अभिक्रिया
 - (ख) गैब्रिएल थैलिमाइड संश्लेषण
 - 21. निम्नलिखित के लिए कारण दीजिए :
 - (क) Mn^{3+}/Mn^{2+} युग्म के लिए E° का मान Cr^{3+}/Cr^{2+} युग्म अथवा Fe^{3+}/Fe^{2+} युग्म के मानों से बहुत अधिक धनात्मक होता है ।
 - (ख) निम्नलिखित समीकरण को पूर्ण कीजिए :

$$2\mathrm{MnO}_{4}^{-} + 16\mathrm{H}^{+} + 5\mathrm{C}_{2}\mathrm{O}_{4}^{2-} \longrightarrow$$

22. (क) दो विद्युत्-अपघट्यों 'A' और 'B' का तनुकरण करने पर, 'A' की ∧_m 25 गुना बढ़ती है जबकि B की 1·5 गुना बढ़ती है । इनमें से कौन-सा विद्युत्-अपघट्य प्रबल है ? अपने उत्तर की पुष्टि के लिए ग्राफ खींचिए ।

अथवा

(ख) 0.05 mol L⁻¹ NaOH विलयन के कॉलम का विद्युत प्रतिरोध 5.55 × 10³ ohm है । इसका व्यास 1 cm एवं लम्बाई 50 cm है । इसकी चालकता का परिकलन कीजिए ।

56/1/2

CLICK HERE

≫

1+1=2

2×1=2

2

2

Get More Learning Materials Here : 💻

- **16.** Assertion (A) : The molecularity of the reaction $H_2 + Br_2 \longrightarrow 2HBr$ appears to be 2.
 - Reason(R): Two molecules of the reactants are involved in the given elementary reaction.
- **17.** Assertion (A): Acetylation of aniline gives a monosubstituted product. Reason (R): Activating effect of - NHCOCH₃ group is more than that of amino group.
- **18.** Assertion (A) : EDTA is used to determine hardness of water. Reason (R) : EDTA is a bidentate ligand.

SECTION B

19. A solution is prepared by dissolving 10 g of non-volatile solute in 200 g of water. It has a vapour pressure of 31.84 mm Hg at 308 K. Calculate the molar mass of the solute.

(Vapour pressure of pure water at 308 K = 32 mm Hg)

- **20.** Explain briefly : 1+1=2
 - (a) Carbylamine reaction
 - (b) Gabriel phthalimide synthesis
- **21.** How would you account for :
 - (a) The E° value for the Mn^{3+}/Mn^{2+} couple is much more positive than that for Cr^{3+}/Cr^{2+} couple or Fe^{3+}/Fe^{2+} couple.
 - (b) Complete the following equation :

$$2\mathrm{MnO}_{\!\!4}^{-} + 16\mathrm{H}^{+} + 5\mathrm{C}_2\mathrm{O}_4^{2-} \longrightarrow$$

22. (a) On diluting two electrolytes 'A' and 'B', the \wedge_m of 'A' increases 25 times while that of 'B' increases by 1.5 times. Which of the two electrolytes is strong ? Justify your answer graphically.

OR

(b) The electrical resistance of a column of $0.05 \text{ mol } \text{L}^{-1}$ NaOH solution of diameter 1 cm and length 50 cm is 5.55×10^3 ohm. Calculate the conductivity.

9

56/1/2

Get More Learning Materials Here :

Regional www.studentbro.in

2×1=2

2

2

P.T.O.

23.	(क)	निम्नलिखित अभिक्रियाओं के उत्पादों की प्रागुक्ति कीजिए : (i) $CH_3CH_2OH \xrightarrow{Cu/273K}$ (ii) $C_6H_5OH \xrightarrow{Br_2 (aq)}$	2×1=2
		अथवा	
	(ख)	निम्नलिखित के लिए कारण दीजिए :	2×1=2
		(i) p-मेथिलफ़ीनॉल की अपेक्षा p-नाइट्रोफ़ीनॉल अधिक अम्लीय होता है।	
		(ii) $NaOCH_3$ के साथ अभिक्रिया करने पर $(CH_3)_3C$ – Br मुख्य उत्पाद	के
		रूप में ऐल्कीन देता है न कि ईथर ।	
24.	(क)	$CH_3 - CH - CH_3 \xrightarrow{PCl_5} A' \xrightarrow{AgCN} B'$	
	(ख)	$CH_3CH_2CH_2Cl + KOH \xrightarrow{ vथनाल} 'A' \xrightarrow{ HBr} 'B'$	
		उपर्युक्त अभिक्रियाओं में 'A' और 'B' को पहचानिए ।	1+1=2

25. प्रोटीन के विकृतीकरण को परिभाषित कीजिए । प्रोटीन की संरचना पर विकृतीकरण का क्या प्रभाव होता है ?

खण्ड ग

- (क) प्रोटीनों और बहुलकों जैसे वृहदाणुओं के मोलर द्रव्यमान निर्धारण करने के लिए परासरण दाब की मापन विधि को वरीयता दी जाती है।
- (ख) जलीय प्राणियों के लिए गर्म जल की तुलना में ठंडे जल में रहना अधिक आरामदायक होता है।
- (ग) 1 M शर्करा विलयन की तुलना में 1 M KCl विलयन के क्वथनांक का उन्नयन लगभग दुगुना होता है।

10

56/1/2

26.

Get More Learning Materials Here : 💶

कारण दीजिए :

3×1=3

(a) Predict the products of the following reactions : $2 \times 1=2$ (i) $CH_3CH_2OH \xrightarrow{Cu/273 K} \rightarrow$ (ii) $C_6H_5OH \xrightarrow{Br_2 (aq)} \rightarrow$ **OR**

- (i) p-nitrophenol is more acidic than p-methylphenol.
 - (ii) $(CH_3)_3C$ Br on reaction with NaOCH₃ gives alkene as the main product and not an ether.

24. (a)
$$CH_3 - CH - CH_3 \xrightarrow{PCl_5} A' \xrightarrow{AgCN} B'$$

 $| OH$

Give reasons for the following :

- (b) $CH_3CH_2CH_2Cl + KOH \xrightarrow{\text{ethanol}} 'A' \xrightarrow{\text{HBr}} 'B'$ Identify 'A' and 'B' in the above reactions.
- **25.** Define denaturation of protein. What is the effect of denaturation on the structure of protein ?

SECTION C

- (a) Measurement of osmotic pressure method is preferred for the determination of molar masses of macromolecules such as proteins and polymers.
 - (b) Aquatic animals are more comfortable in cold water than in warm water.
 - (c) Elevation of boiling point of 1 M KCl solution is nearly double than that of 1 M sugar solution.

11

>>

56/1/2

23.

(b)

nol.

1+1=2

 $2 \times 1 = 2$

3×1=3

P.T.O.

🕀 www.studentbro.in

(क)
$$CH_3CH_2CH_2Br \xrightarrow{\frac{1}{2}crah}{\Delta} (A) \xrightarrow{HBr} (B)$$

(ख) (A)
$$\xrightarrow{\text{SOCl}_2}$$
 (B) $\xrightarrow{\text{Na/ईथर}}$ (C) (B) $\xrightarrow{\text{NaOCH}_3}$ 2-मेथॉक्सीप्रोपेन

28. आप निम्नलिखित रूपान्तरण कैसे करेंगे : (कोई
$$\overline{n}$$
) $3 \times 1=3$

- (क) फ़ीनॉल से 2-हाइड्रॉक्सीबेन्ज़ैल्डिहाइड
- (ख) ऐनिसोल से 2-मेथॉक्सीऐसीटोफ़ीनोन
- (ग) प्रोपीन से प्रोपेन-2-ऑल
- (घ) एथेनॉल से ऐथेनैल
- 29. (क) (i) लैक्टोस, (ii) माल्टोस के जल-अपघटन के उत्पाद क्या हैं ?
 - (ख) स्टार्च और सेलुलोस के मध्य मूलभूत संरचनात्मक अंतर दीजिए।

30. (क) व्याख्या कीजिए क्यों :

- (i) बेन्ज़ोइक अम्ल में कार्बोक्सिल समूह मेटा निर्देशक होता है।
- (ii) ऐल्डिहाइडों और कीटोनों के परिष्करण के लिए सोडियम बाइसल्फाइट प्रयुक्त किया जाता है ।
- (iii) कार्बोक्सिलिक अम्ल, कार्बोनिल समूह की अभिलक्षणिक अभिक्रियाएँ नहीं
 देते हैं ।

अथवा

(ख) एक कार्बनिक यौगिक 'A' जिसका अणुसूत्र C₃H₈O है, 573 K पर Cu के साथ अभिक्रियित करने पर 'B' देता है । 'B' फेलिंग विलयन को अपचित नहीं करता है लेकिन I₂/NaOH के साथ यौगिक 'C' का पीला अवक्षेप देता है । A, B और C संरचनाओं का निगमन कीजिए ।

56/1/2

$$<$$
 12 $>$

≫

R www.studentbro.in

3×1=3

3

3

 $1\frac{1}{2}+1\frac{1}{2}=3$

27. Complete the following reactions :

(a) $CH_3CH_2CH_2Br \xrightarrow{Alc. KOH} (A) \xrightarrow{HBr} (B)$

(b) (A)
$$\xrightarrow{\text{SOCl}_2}$$
 (B) $\xrightarrow{\text{Na/Ether}}$ (C)
NaOCH₃ \rightarrow 2-Methoxypropane

28. How do you convert the following : (Any *three*)
$$3 \times 1=3$$

- (a) Phenol to 2-Hydroxybenzaldehyde
- (b) Anisole to 2-Methoxyacetophenone
- (c) Propene to Propan-2-ol
- (d) Ethanol to Ethanal
- **29.** (a) What are the hydrolysis products of (i) Lactose, (ii) Maltose ?
 - (b) Give the basic structural difference between starch and cellulose. 3
- **30.** (a) Explain why :
 - (i) Carboxyl group in benzoic acid is meta directing.
 - (ii) Sodium bisulphite is used for the purification of aldehydes and ketones.
 - (iii) Carboxylic acids do not give characteristic reactions of carbonyl group.

OR

(b) An organic compound 'A', having the molecular formula C_3H_8O on treatment with Cu at 573 K, gives 'B'. 'B' does not reduce Fehling's solution but gives a yellow precipitate of the compound 'C' with $I_2/NaOH$. Deduce the structures of A, B and C.

 56/1/2
 13
 P.T.O.

 Get More Learning Materials Here :
 CLICK HERE (>>)
 (()) www.studentbro.in

 $1\frac{1}{2}$ + $1\frac{1}{2}$ =3

3×1=3

निम्नलिखित प्रश्न केस-आधारित प्रश्न हैं । केस को सावधानीपूर्वक पढ़िए और दिए गए प्रश्नों के उत्तर दीजिए ।

- 31. उपसहसंयोजन यौगिकों में धातुएँ दो प्रकार की संयोजकताएँ, प्राथमिक और द्वितीयक, प्रदर्शित करती हैं । प्राथमिक संयोजकताएँ आयननीय होती हैं तथा ऋणात्मक आवेशित आयनों द्वारा संतुष्ट होती हैं । द्वितीयक संयोजकताएँ अन-आयननीय होती हैं और एकाकी इलेक्ट्रॉन युग्म युक्त उदासीन अथवा ऋणात्मक आयनों द्वारा संतुष्ट होती हैं । प्राथमिक संयोजकताएँ अन-आयननीय होती हैं । प्राथमिक संयोजकताएँ अदिशिक होती हैं । ज्वकि द्वितीयक संयोजकताएँ संकुल की आकृति निर्धारित करती हैं ।
 - (i) यदि $PtCl_2 \cdot 2NH_3$, $AgNO_3$ के साथ अभिक्रिया नहीं करता है, तो इसका सूत्र क्या होगा ?

- (iii) (1) आयरन(III)हैक्सासायनिडोफेरेट(II) का सूत्र लिखिए।
 - (2) $[Co(NH_3)_5Cl] Cl_2$ का आई.यू.पी.ए.सी. नाम लिखिए । $2 \times 1=2$

1

1

🕀 www.studentbro.in

अथवा

- (iii) $[Ni(CN)_4]^{2-}$ का संकरण एवं चुम्बकीय व्यवहार लिखिए । 2[परमाणु संख्या : Ni = 28]
- 32. अभिक्रिया वेग, इकाई समय में अभिकारकों की सांद्रता घटने अथवा उत्पादों की सांद्रता वृद्धि से संबंधित होता है । इसे किसी क्षण विशेष पर तात्क्षणिक वेग के रूप में और किसी दीर्घ समय अंतराल में औसत वेग से प्रदर्शित किया जा सकता है । अभिक्रिया वेग के गणितीय निरूपण को वेग नियम कहते हैं । वेग स्थिरांक एवं अभिक्रिया की कोटि का निर्धारण वेग नियम अथवा समाकलित वेग समीकरण द्वारा कर सकते हैं ।

14

CLICK HERE

≫

56/1/2

Get More Learning Materials Here : 💻

SECTION D

The following questions are case-based questions. Read the case carefully and answer the questions that follow.

- **31.** In coordination compounds, metals show two types of linkages, primary and secondary. Primary valencies are ionisable and are satisfied by negatively charged ions. Secondary valencies are non-ionisable and are satisfied by neutral or negative ions having lone pair of electrons. Primary valencies are non-directional while secondary valencies decide the shape of the complexes.
 - (i) If $PtCl_2 \cdot 2NH_3$ does not react with AgNO₃, what will be its formula?

(ii) What is the secondary valency of
$$[Co(en)_3]^{3+}$$
?

- (iii) (1) Write the formula of Iron(III)hexacyanidoferrate(II).
 - (2) Write the IUPAC name of $[Co(NH_3)_5Cl] Cl_2$. $2 \times 1=2$

OR

- (iii) Write the hybridization and magnetic behaviour of $[Ni(CN)_4]^2$. 2 [Atomic number : Ni = 28]
- **32.** The rate of reaction is concerned with decrease in concentration of reactants or increase in the concentration of products per unit time. It can be expressed as instantaneous rate at a particular instant of time and average rate over a large interval of time. Mathematical representation of rate of reaction is given by rate law. Rate constant and order of a reaction can be determined from rate law or its integrated rate equation.

56/1/2

CLICK HERE

🕀 www.studentbro.in

P.T.O.

(i)	औसत अभिक्रिया वेग क्या होता है ?	1
(ii)	दो कारक लिखिए जो अभिक्रिया की दर को प्रभावित करते हैं।	1
(iii)	(1) शून्य कोटि की अभिक्रिया के लिए अभिक्रिया वेग को क्या होता है ?	
	(2) शून्य कोटि की अभिक्रिया के लिए ${f k}$ की इकाई क्या है ?	2×1=2

अथवा

- (iii) (1) एक अभिक्रिया P + 2Q \longrightarrow उत्पाद के लिए वेग = $k[P]^{1/2} [Q]^1$ है । अभिक्रिया की कोटि क्या है ?
 - (2) एक उदाहरण सहित छद्म प्रथम कोटि अभिक्रिया को परिभाषित कीजिए । $2 \times 1 = 2$

खण्ड ङ

- 33. निम्नलिखित प्रत्येक के लिए कारण दीजिए :
 - (i) संक्रमण तत्त्वों की 3d श्रेणी में से मैंगनीज़ +7 की उच्चतम ऑक्सीकरण अवस्था प्रदर्शित करता है ।
 - (ii) संक्रमण धातुएँ और उनके यौगिक रासायनिक अभिक्रियाओं में सामान्यत: अच्छे उत्प्रेरक होते हैं ।
 - (iii) Cr^{2+} अपचायक प्रकृति का है जबकि उसी d-कक्षक विन्यास (d^4) का Mn^{3+} एक ऑक्सीकारक है ।
 - (iv) Zn की कणन एन्थैल्पी न्यूनतम होती है।
 - (v) जलीय विलयन में Cu+ अस्थायी होता है।
- 34. (क) (i) निम्नलिखित रूपान्तरणों को सम्पन्न कीजिए :
 - (1) एथेनैल से ब्यूट-2-ईन-1-अल
 - (2) प्रोपेनॉइक अम्ल से 2-क्लोरोप्रोपेनॉइक अम्ल
 - (ii) C_5H_{10} अणुसूत्र वाला एक ऐल्कीन ओज़ोनी-अपघटन से दो यौगिकों 'B'
और 'C' का मिश्रण देता है । यौगिक 'B' धनात्मक फेलिंग परीक्षण देता है
और I_2 तथा NaOH विलयन के साथ भी अभिक्रिया करता है । यौगिक 'C'
फेलिंग विलयन परीक्षण नहीं देता लेकिन आयोडोफॉर्म निर्मित करता है ।
यौगिक 'A', 'B' और 'C' को पहचानिए ।2+3=5

16

CLICK HERE

≫

अथवा

56/1/2

 $5 \times 1 = 5$

(i)	Wha	t is average rate of reaction ?	1
(ii)	Writ	te two factors that affect the rate of reaction.	1
(iii)	(1)	What happens to rate of reaction for zero order reaction ?	
	(2)	What is the unit of k for zero order reaction ?	2×1=2
		OR	
(iii)	(1)	For a reaction P + 2Q \longrightarrow Products	
		Rate = $k[P]^{1/2}$ [Q] ¹ . What is the order of the reaction ?	
	(2)	Define pseudo first order reaction with an example.	2×1=2

SECTION E

33. Assign reason for each of the following : $5 \times 1=5$

- Manganese exhibits the highest oxidation state of +7 among the 3d series of transition elements.
- (ii) Transition metals and their compounds are generally found to be good catalysts in chemical reactions.
- (iii) Cr^{2+} is reducing in nature while with the same d-orbital configuration (d⁴) Mn^{3+} is an oxidising agent.
- $(iv) \ \ \, Zn \ has \ \, lowest \ enthalpy \ \, of \ \, atomization.$
- $(v) \quad Cu^{+} \ is \ unstable \ in \ an \ aqueous \ solution.$
- **34.** (a) (i) Carry out the following conversions :
 - (1) Ethanal to But-2-en-1-al
 - (2) Propanoic acid to 2-chloropropanoic acid

17

CLICK HERE

(ii) An alkene with molecular formula C_5H_{10} on ozonolysis gives a mixture of two compounds 'B' and 'C'. Compound 'B' gives positive Fehling test and also reacts with iodine and NaOH solution. Compound 'C' does not give Fehling solution test but forms iodoform. Identify the compounds 'A', 'B' and 'C'. 2+3=5

OR

56/1/2

P.T.O.

(ख) (i) उपयुक्त रासायनिक परीक्षण से विभेद कीजिए :

- (1) $CH_3COCH_2CH_3$ और $CH_3CH_2CH_2CHO$
- (2) एथेनैल और ऐथेनॉइक अम्ल
- (ii) ऐसीटोन के ऑक्सिम की संरचना लिखिए।

(iii) A H D को पहचानिए |
$$2+1+2=5$$

CH₃COOH $\xrightarrow{PCl_5}$ A $\xrightarrow{H_2/Pd-BaSO_4}$ B $\xrightarrow{(i) CH_3/MgBr}$ C \downarrow LiAlH₄ D

- 35. (क) (i) आयनों के स्वतंत्र अभिगमन का कोलराऊश नियम लिखिए । कोलराऊश नियम के अनुसार अनंत तनुता पर ऐसीटिक अम्ल की मोलर चालकता के लिए व्यंजक लिखिए ।
 - (ii) 298 K पर दी गई अभिक्रिया के लिए अधिकतम कार्य और $\log K_c$ परिकलित कीजिए :

Ni (s) + 2Ag⁺ (aq)
$$\rightleftharpoons$$
 Ni²⁺ (aq) + 2Ag (s)
दिया गया है : $E_{Ni^{2+}/Ni}^{\circ} = -0.25 \text{ V}, \quad E_{Ag^{+}/Ag}^{\circ} = +0.80 \text{ V}$
1 F = 96500 C mol⁻¹ 2+3=5
अथवा

 (ख) (i) फैराडे के विद्युत्-अपघटन का प्रथम नियम लिखिए। 1 मोल Cu²⁺ को Cu
 में अपचयित करने के लिए फैराडे के पदों में कितना आवेश आवश्यक होगा ?

18

 (ii) 298 K पर निम्नलिखित सेल का विद्युत्-वाहक बल (emf) परिकलित कीजिए :
 Mg (s) | Mg²⁺ (0·1 M) || Cu²⁺ (0·01 M) | Cu (s) [E°_{सेल} = + 2·71 V, 1 F = 96500 C mol⁻¹, log 10 = 1] 2+3=5

(b) (i) Distinguish with a suitable chemical test :

- (1) $CH_3COCH_2CH_3$ and $CH_3CH_2CH_2CHO$
- (2) Ethanal and Ethanoic acid
- (ii) Write the structure of oxime of acetone.

(iii) Identify A to D.

$$CH_{3}COOH \xrightarrow{PCl_{5}} A \xrightarrow{H_{2}/Pd-BaSO_{4}} B \xrightarrow{(i) CH_{3}/MgBr} C$$

$$\downarrow LiAlH_{4}$$

$$D$$

- **35.** (a) (i) State Kohlrausch's law of independent migration of ions. Write an expression for the molar conductivity of acetic acid at infinite dilution according to Kohlrausch's law.
 - (ii) Calculate the maximum work and log K_c for the given reaction at 298 K :

Ni (s) + 2Ag⁺ (aq)
$$\rightleftharpoons$$
 Ni²⁺ (aq) + 2Ag (s)
Given : $E_{Ni^{2+}/Ni}^{\circ} = -0.25 \text{ V}, \quad E_{Ag^{+}/Ag}^{\circ} = +0.80 \text{ V}$
1 F = 96500 C mol⁻¹ 2+3=5
OR

(b) (i) State Faraday's first law of electrolysis. How much charge, in terms of Faraday, is required for the reduction of 1 mol Cu²⁺ to Cu ?

(ii) Calculate emf of the following cell at 298 K for

$$Mg(s) \mid Mg^{2+}(0.1 \text{ M}) \mid Cu^{2+}(0.01 \text{ M}) \mid Cu(s)$$

 $[E_{cell}^{\circ} = +2.71 \text{ V}, 1 \text{ F} = 96500 \text{ C mol}^{-1}, \log 10 = 1]$ 2+3=5

≫

56/1/2

CLICK HERE

	Marking Scheme Strictly Confidential (For Internal and Restricted use only) Senior Secondary School Examination, 2023 SUBJECT NAME : CHEMISTRY (043)(56/1/2)
Gen	eral Instructions: -
1	You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.
2	"Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."
3	Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-XII, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.
4	The Marking scheme carries only suggested value points for the answers These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.
5	The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
6	Evaluators will mark($$) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
7	If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
8	If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.

Get More Learning Materials Here : 📕

9	If a student has attempted an extra question, answer of the question deserving
	more marks should be retained and the other answer scored out with a note
10	No marks to be deducted for the cumulative effect of an error. It should be
	penalized only once.
11	A full scale of marks 70 has to be used. Please do not hesitate to award full
	marks if the answer deserves it.
12	Every examiner has to necessarily do evaluation work for full working hours
12	i.e., 8 hours every day and evaluate 20 answer books per day in main subjects
	and 25 answer books per day in other subjects (Details are given in Spot
	Guidelines). This is in view of the reduced syllabus and number of questions in
13	question paper. Ensure that you do not make the following common types of errors committed
10	by the Examiner in the past:-
	• Leaving answer or part thereof unassessed in an answer book.
	 Giving more marks for an answer than assigned to it.
	 Wrong totaling of marks awarded on an answer.
	 Wrong transfer of marks from the inside pages of the answer book to the title page.
	 Wrong question wise totaling on the title page
	 Wrong totaling of marks of the two columns on the title page.
	 Wrong grand total.
	 Marks in words and figures not tallying/not same.
	 Wrong transfer of marks from the answer book to online award list.
	• Answers marked as correct, but marks not awarded. (Ensure that the right
	tick mark is correctly and clearly indicated. It should merely be a line.
	 Half or a part of answer marked correct and the rest as wrong, but no
	marks awarded.
14	While evaluating the answer books if the answer is found to be totally incorrect,
4.5	it should be marked as cross (X) and awarded zero (0)Marks.
15	Any un assessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the
	personnel engaged in the evaluation work as also of the Board. Hence, in order
	to uphold the prestige of all concerned, it is again reiterated that the
	instructions be followed meticulously and judiciously.
16	The Examiners should acquaint themselves with the guidelines given in the "Guidelines for spot Evaluation" before starting the actual evaluation
17	Every Examiner shall also ensure that all the answers are evaluated, marks
	carried over to the title page, correctly totaled and written in figures and words.
18	The candidates are entitled to obtain photocopy of the Answer Book on request
	on payment of the prescribed processing fee. All Examiners/Additional Head
	that evaluation is carried out strictly as per value points for each answer as
	given in the Marking Scheme.

XII_39_043_56/1/2_Chemistry # Page-**2**

Get More Learning Materials Here : 💻

Senior Secondary School Examination, 2023 CHEMISTRY (Subject Code–043) [Paper Code: 56/1/2]

Q. No.	EXPECTED ANSWER / VALUE POINTS	Marks
	SECTION-A	
1.	(c)	1
2.	(c) / Award full mark if attempted (Printing error)	1
3.	(d)	1
4.	(d) / Full mark to be awarded for any option.	1
5.	(c)	1
6.	(b)	1
7.	(a)	1
8.	(a)	1
9.	(c)	1
10.	(c)	1
11.	(c)	1
12.	(b)	1
13.	(b)	1
14.	(c) / Full mark to be awarded for any option	1
15.	(c)	1
16.	(a)	1
17.	(c)	1
18.	(c)	1
	SECTION-B	
19.	$\frac{pA^{\circ} - p_A}{PA^{\circ}} = \frac{\frac{W_A}{M_A}}{\frac{W_A}{M_A} + \frac{W_B}{M_B}} = \frac{\frac{W_B}{M_B}}{\frac{W_A}{M_A}}$	1⁄2

XII_39_043_56/1/2_Chemistry # Page-**3**

XII_39_043_56/1/2_Chemistry # Page-4

	A = πr^2 = 3.14 × (0.5) ² = 0.785 cm ² , ℓ = 50 cm	
	$\mathbf{k} = \frac{\ell}{R \times A}$	1⁄2
	$=\frac{50}{0.785 \times (5.55 \times 10^3)}$	1
	$= 11.47 \text{ X } 10^{-3} \text{ S cm}^{-1}$	1/2
23.	(or by any other correct method) (a) (i) No reaction possible at 273 K / CH ₃ CHO at 573 K	1
	(ii) OH	-
	Br Br	1
	Br	1
	OR	
	(i) -NO ₂ group is electron withdrawing (- R /-I effect) while -CH ₂ is electron	
	releasing group / conjugate base of p-nitrophenoxide ion is more resonace	1
	stabilised.	1
	(ii) CH ₃ ONa is not only a good nucleophile but a strong base as well which favours	
	the elimination reaction of (CH ₃) ₃ C-Br rather than substitution.	1
24.	(a) $A = CH_3 - CH_3 - CH_3$ / 2-Chloropropane	
	CI	
	$B = CH_2 - CH_2 - CH_3$ / isopropul isopropu	$\frac{1}{2} \times 4$
		,
	NC	
	(b) $A = CH_3 - CH = CH_2$ / Propene	
	$B = CH_3 - CH - CH_3 / 2-Bromopropane$	
	Br	
25.	When a protain is subjected to a change in temperature or chamical change then it	1
	loses its biological activity.	
	2° and 3° structures are destroyed but 1° structure remains intact.	1
	SECTION-C	
26.	(a) Osmotic pressure is measured at room temperature / molarity of the solution is	
	used instead of molality / as compared to other colligative properties its magnitude	
	is large even for a very dilute solution.	
	(b) Solubility of oxygen is higher at a lower temperature.	
	(c) KCl being strong electrolyte dissociates into two moles of ions but sugar will	
	not dissociate/ for KCl, $i=2$ and for sugar, $i=1$.	1 x 3
		1

CLICK HERE

》

XII_39_043_56/1/2_Chemistry # Page-**5**

XII_39_043_56/1/2_Chemistry # Page-6

Get More Learning Materials Here : 📕

	SECTION-D	
31.	(i) $[Pt(NH_3)_2Cl_2]$	1
	(ii) 6	1
	(iii) (1) $Fe_4[Fe(CN)_6]_3$	
	(2) Pentamminechloridocobalt(III) chloride.	1,1
	(iii) dsp ² , diamagnetic	11
32.	(i) Change in the concentration of a reactant or product per unit time.	1,1
	(ii) Concentration of reactants, Surface area, catalyst and temperature (any two).	1
	(iii) (1) rate is independent of the concentration of reactant(s) /rate remains constant	
	/ rate = k	
	(2) mol $I = 1 c^{-1}$	1+1
	(2) more s	
	(iii) (1) 3/2 / 1.5	1
	(2) A reaction that appears to be of higher order but follows first-order kinetics	1
	Example: Hydrolysis of an ester. (or any other correct example)	1/ 1/
	SECTION-E	1/2,1/2
33.	(i) Due to the participation of all 3d and 4s electrons in bond formation /due to the	
	presence of maximum number of unpaired electrons.	1
	(ii) Due to variable oxidation state / due to the ability to adopt multiple oxidation	1
	states / due to the large surface area / due to complex formation.	
	(iii) Cr^{2+} changes from d ⁴ to stable half-filled t_{2g}^3 configuration while Mn^{3+}	
	changes to stable half-filled d^5 configuration.	1
	(iv) Due to the absence of unpaired electrons and weak interatomic interactions.	1
	(v) Cu^+ ion (aq.) undergoes disproportionation to Cu^{2+} (aq.) and Cu /	
	$2 \operatorname{Cu}^+(\operatorname{aq.}) \longrightarrow \operatorname{Cu}^{2+}(\operatorname{aq.}) + \operatorname{Cu}(\operatorname{s})$	1
34.	(a) (i) (1)	
	(1) $\operatorname{dil}.\operatorname{NaOH}$ CH CH CH CHO Δ CH CH $=$ CH CHO	
	H_2O	1
	(2) (2)	
	$CH_3 CH_2 - COOH \xrightarrow{(i)} Cl_2 / Red P CH_3 - CH - COOH$	
	(ii) H ₂ O	1
	(ii)	
	$A = CH_{a} - CH = C - CH_{a} / 2 - Methylbut - 2 - ene$	
	$B = H_{C}$ (Ethanal / A cotal debude	
	$C = O = C - CH_3$ / Propanone / Acetaidenyde	1 x 3
	CH ₃	

XII_39_043_56/1/2_Chemistry # Page-7

	OR	
	 (b) (i) (1) Add Iodine (I₂), NaOH, and heat both the test tubes containing the given organic compounds. Butanone gives yellow precipitate (CHI₃) while butanal will 	1
	 not give the positive iodoform test. (2) Add NaHCO₃ in both the test tube containing the given organic compounds. Ethanoic acid will give brisk effervescence of CO₂ and ethanal will not. 	1
	(or any other suitable chemical test)	
	OH I	1
	H_3C CH ₃	
	(iii) $A = CH_3COCI$, $B = CH_3CHO$, $C = (CH_3)_2CH(OH)$, $D = CH_3CH_2OH$	
		¹∕₂ x 4
35.	(a)(i) Limiting molar conductivity of an electrolyte can be represented as the sum of the individual contributions of the anion and cation of the electrolyte.	1
	$\wedge_{\rm m}^{\circ} ({\rm CH}_{3}{\rm COOH}) = \lambda^{\circ} {\rm CH}_{3}{\rm COO}^{-} + \lambda^{\circ} {\rm H}^{+}$	1
	(ii) $\Delta_{\mathbf{r}} \mathbf{G}^{\circ} = - \mathbf{n} \mathbf{F} \mathbf{E}_{cell}^{\circ}$	
	Maximum work = $-\Delta_r G^\circ = nFE_{cell}^\circ$	1/2
	$= 2 \times 96500 \text{ C mol}^{-1} \times (0.80 + 0.25) \text{ V}$	
	$= 2 \times 96500 \times 1.05 \text{ J mol}^{-1}$	1/2
	$= 202,650 \text{ J mol}^{-1} \text{ or } 202.65 \text{ kJ mol}^{-1}$	1
	$\log K_{\rm C} = n E_{\rm cell}^{\circ}$	
	$\frac{1}{0.059}$	1⁄2
	$=\frac{2 \times 1.05}{0.050} = 35.6$	1/2
	0.059 OR	
	(b) (i) It states that the mass of a substance deposited /liberated at the electrodes is directly proportional to the charge/quantity of electricity passed through the	1
	electrolyte. 2F charge is required.	1
	(ii) $E_{cell} = E_{cell}^{\circ} - \frac{0.0591}{2} \log \frac{[Mg^{2+}]}{[Cu^{2+}]}$	1
	$= 2.71 \text{ V} - \frac{0.0591}{100000000000000000000000000000000000$	
	2 0.01	1
	$= 2.71 \text{ V} - \frac{0.0371}{2} \log 10$	
	= 2.71 V - 0.0295	1
	$= 2.68 \text{ V.} \qquad (\text{Deduct } \frac{1}{2} \text{ mark for no or incorrect unit})$	

XII_39_043_56/1/2_Chemistry # Page-**8**

Get More Learning Materials Here : 💻

